RAP)DS

The Platform Inside and Out

Nick Becker
RAPIDS Engineering

RAPIDS

End-to-End Accelerated GPU Data Science

Data Preparation Model Training Visualization

Dask

CuML
Machine Learning

cuDF culO
Analytics

cuGraph ' PyToxIQNCeI:ainer
Graph Analytics S Ler e

cuxfilter <> pyViz
Visualization

GPU Memory >>> ﬁf;c\:e

RAPIDS 2

Data Processing Evolution

Faster data access, less data movement
Hadoop Processing, Reading from disk

HDFS HDFS | HDFS HDFS
Write

HDFS

Read Query Write | Read ETL

Read ML Train

Spark In-Memory Processing

25-100x
Improvement
HDFS . Less code
Read Query ML Train Language flexible

Primarily In-Memory
Traditional GPU Processing 5-10x Improvement
- = More code
HDFS GPU = |GPU - JGPU ML Language rigid
Read Read 2€Y Wer]t Read C'- W:t Read Train Substantially on GPU

RAPIDS 3

Data Movement and Transformation

The bane of productivity and performance

APP B

GPU
Data

Copy & Convert

CPU GPU

Copy & Convert

Copy & Convert

GPU
Data

\ APP A

Load Data

RAPIDS 4

Data Movement and Transformation
What if we could keep data on the GPU?

- \[Read Data
APP B

GPU
Data

CPU GPU

GPU
Data

\ APP A

Load Data
-
RAPIDS 5

Learning from Apache Arrow »»

Pandas

Parquet

Parquet

Cassandra Cassandra

e Each system has its own internal memory format e All systems utilize the same memory format
70-80% computation wasted on serialization and deserialization ® No overhead for cross-system communication
e Similar functionality implemented in multiple projects e Projects can share functionality (eg, Parquet-to-Arrow
reader)

From Apache Arrow Home Page - https://arrow.apache.org/

RAPIDS 6

Data Processing Evolution

Faster data access, less data movement
Hadoop Processing, Reading from disk

25-100x
Improvement
Less code
Language flexible
Primarily In-Memory

Spark In-Memory Processing

Traditional GPU Processing 5-10x Improvement
- - More code
: : Language rigid
W:t W:t Substantially on GPU
RAPIDS 50-100x Improvement
Same code

ML Language flexible
Train Primarily on GPU

RAPIDS 7

MOV Query ETL

Rea

Faster Speeds, Real-World Benefits

culO/cuDF -
Load and Data Preparation XGBoost Machine Learning End-to-End
20 cru Nodes [27+ 20 CPU Nodes 2290 20 CPU Nodes [N 8762
30 cpU Nodes (GGG <75 30 CPU Nodes 1956 30 CPU Nodes [N 6148
50 cPU Nodes [715 50 CPU Nodes 1999 50 CPU Nodes [l 3925
100 cPU Nodes [l 379 100 CPU Nodes 1948 100 CPU Nodes [l 3221
DGX-2 | 42 DGX-2 169 DGX-2 N o322
5x DGX-1 |19 5x DGX-1 157 5x DGX-1 213
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 0 2000 4000 6000 8000 10000
Time in seconds (shorter is better)
M culO/cuDF (Load and Data Prep) Data Conversion XGBoost
Benchmark CPU Cluster Configuration DGX Cluster Configuration
200GB CSV dataset; Data prep includes CPU nodes (61 GiB memory, 8 vCPUs, 5x DGX-1 on InfiniBand
joins, variable transformations 64-bit platform), Apache Spark network

RAPIDS 8

Faster Speeds, Real-World Benefits
Improving Over Time

culO/cuDF -
Load and Data Preparation XGBoost Machine Learning End-to-End

DGX-2 DEX-2 322
RAPIDS v0.2 RAPIDS v0.2
DGX-2 pox-2 209
RAPIDS v0.10 RAPIDS v0.10

DGX-2
RAPIDS v0.2

DGX-2
RAPIDS v0.10

5x DGX-1 5x DGX-1 213
RAPIDS v0.2 RAPIDS v0.2

RAPIDS v0.2
5x DGX-1 5xDGX-1 RAP:]xs DGX-1 _ 168
RAPIDS v0.10 RAPIDS v0.10 v0.10
2 50 0 50 100 150 200 0 100 200 800 400
Time in seconds (shorter is better)
M culO/cuDF (Load and Data Prep) Data Conversion XGBoost
Benchmark CPU Cluster Configuration DGX Cluster Configuration
200GB CSV dataset; Data prep includes CPU nodes (61 GiB memory, 8 vCPUs, 5x DGX-1 on InfiniBand
joins, variable transformations 64-bit platform), Apache Spark network

RAPIDS 9

Speed, Ease of Use, and Iteration

%{ g;:;i?ns6holle|0 m -
Winners are those who went through
more iterations of the "loop of
progress" -- going from an idea, to its
implementation, to actionable results.
So the winning teams are simply those
able to run through this loop *faster*.

And this is were Keras gives you an
edge.

Visualization
& understanding

Software tools

Experiment

A

Infrastructure

12:31 PM - 3 Apr 2019

soretweets 158Lkes 8 DO Q@O 7 & 2

Qs 0 s @1 O

The Way to Win at Data Science

Frangois Chollet @ @fchollet - Apr 3 7
We often talk about how following UX best practices for API design makes
Keras more accessible and easier to use, and how this helps beginners.

But those who stand to benefit most from good UX *aren't” the beginners. It's
actually the very best practitioners in the world.

Q1 .7 Q s0]

Frangois Chollet @ @fchollet - Apr 3 o
Because good UX reduces the overhead (development overhead & cognitive
overhead) to setting up new experiments. It means you will be able to iterate
faster. You will be able to try more ideas.

And ultimately, that's how you win competitions or get papers published.
QO 2 T n O m)

Frangois Chollet @ @fchollet - Apr 3 &
So | don't think it's mere personal preference if Kaggle champions are
overwhelmingly using Keras.

Using Keras means you're more likely to win, and inversely, those who practice
the sort of fast experimentation strategy that sets them up to win are more likely
to prefer Keras.

©s mns On 8

Joshua Patterson @datametrician - Apr 3 v
Replying to @fchollet

This is the fundamental believe that drives @RAPIDSai. @nvidia #GPU
infrastructure is fast, people need to iterate quickly, people want a known
#python interface. Combine them and you're off to the races!

(@) n 2 O n i

Frangois Chollet @ @fchollet - Apr 3 <
¥ The second question asked about secondary frameworks -- usually teams win

with an ensemble that involves many different ML frameworks. Here are *all*
frameworks used.

Sklearn tops that ranking: everyone uses sklearn (although often as an auxiliary,
for preprocessing or scoring).

All (primary + auxiliary) ML software tools used by top-5 Kaggle
teams in each competition (n=120)
Schkit Learn
Keras
LightGBM
XGBoost
PyTorch

TensarFlow
(non-Keras)

Caffe

MXNet

Fastal

Caffe2

CatBoost

R Random Forest
0

20 4 60 80

)
Deep Classic

Q 4 1 4 ¥ 129 8

kaggle

RAPIDS

RAPIDS Core

Open Source Data Science Ecosystem
Familiar Python APIs

Data Preparation Model Training Visualization

Pandas Scikit-Learn NetworkX PyTOﬁQN(éI:ainer
Analytics Machine Learning Graph Analytics Deep Learning

CPU Memory

Matplotlib/Plotly
Visualization

RAPIDS 12

RAPIDS

End-to-End Accelerated GPU Data Science

Data Preparation Model Training Visualization

Dask

CuML
Machine Learning

cuDF culO
Analytics

cuGraph ' PyToxIQNCeI:ainer
Graph Analytics S Ler e

cuxfilter <> pyViz
Visualization

GPU Memory >>> ﬁf;c\:e

RAPIDS 13

Dask

RAPIDS

Scaling RAPIDS with Dask

Data Preparation Model Training Visualization

Dask

CuML
Machine Learning

cuDF culO
Analytics

cuGraph ' PyTorAxl)zNCeI:ainer
Graph Analytics Deep Learning

cuxfilter <> pyViz
Visualization

GPU Memory >>> ﬁf;c\:e

RAPIDS 15

Why Dask?

* Easy Migration: Built on top of NumPy, Pandas
Scikit-Learn, etc.

* Easy Training: With the same APIs

* Trusted: With the same developer community

Deployable Easy Scalability

e HPC: SLURM, PBS, LSF, SGE
¢ Cloud: Kubernetes
* Hadoop/Spark: Yarn

* Easy to install and use on a laptop
* Scales out to thousand-node clusters

Popular

* Most common parallelism framework today in
the PyData and SciPy community

RAPIDS 16

Why OpenUCX?

Bringing hardware aCcelerated communications to Dask

TCP sockets are slow!

UCX provides uniform access to transports (TCP,
InfiniBand, shared memory, NVLink)

Alpha Python bindings for UCX (ucx-py)

Will provide best communication performance, to Dask
based on available hardware on nodes/cluster

conda install -c conda-forge -c rapidsai \
cudatoolkit=<CUDA version> ucx-proc=*=gpu ucx ucx-py

RAPIDS 17

(Y
~
m

£
et
=2

w

©

cuDF Merge Ban

O]
121

Benchmarks: Distributed cuDF Random Merge

18,
171
16
15
14
13

11-
10-

:0.18"

Comm Type
m IB+NV
m B
= NV
TCP

cuDF v0.13, UCX-PY 0.13
Running on NVIDIA DGX-1 (8GPUs):

GPU: NVIDIA Tesla V100 32GB
CPU: Intel(R) Xeon(R) CPU 8168
@ 2.70GHz

Benchmark Setup:

DataFrames: Left/Right 1x int64 column key
column, 1x int64 value columns

Merge: inner

30% of matching data balanced across each
partition

RAPIDS

cuDF

RAPIDS

GPU Accelerated data wrangling and feature engineering

Data Preparation Model Training Visualization

Dask

CuML
Machine Learning

cuDF culO
Analytics

cuGraph PyToxIQNCeI:ainer
Graph Analytics Deep Learning

cuxfilter <> pyViz
Visualization

GPU Memory >>> :f;c\:e

RAPIDS 20

GPU-Accelerated ETL

The average data scientist spends 90+% of their time in ETL as opposed to training

- > i restart ETL
‘) another... @¥*#! forgot to add a feature Find unexpected null values y
s / stored as string... I train model
9 \ / restart ETL workflow / validate
B eh, forgot to add a feature /

v

 test model

start ETL workflow . start ETL ;)
get a coffee ™\ 2J workflow™ /exp_erl_me_nt with
get a coffee optimizations
= & repeat
W\ — ‘
l CPU switch to decaf conflgxg(:k%'gl;v s
configure ETL workflow — |&] POWERED POWERED

WORKFLOW

WORKFLOW

ot Find unexpected null values D{ dataset collection
dataset downloads stored as string... = .
overnight Ve o analysis
e vemigHt -l ETL
‘ restart ETL workflow again \ train
go home . inference

stay late

on time

RAPIDS 21

ETL Technology Stack

Dask cuDF
cuDF
Pandas

CUDA

Ind
N

Thrust
Cub
Jitify

RAPIDS

ETL: the Backbone of Data Science

libcuDF is...
CUDA C++ Library

e Table (dataframe) and column types and std::unique_ptr<table>

algorithms gather(table_view const& input,

column_view const& gather_map, ..)
e CUDA kernels for sorting, join, groupby, { o
. e . . // return a new table containing
reductions, partitioning, elementwise // rows from input indexed by
operations, etc. // gather_map
}

e Optimized GPU implementations for
strings, timestamps, numeric types
(more coming)

<3

e Primitives for scalable distributed ETL

S =

NVIDIA.

RAPIDS 23

ETL: the Backbone of Data Science

cuDF is...

Python Library

D e et e e e e A Python library for manipulating GPU

In [3]: #Taking a look at the data. We use "to _pandas()" to get the pretty printing. DataFrameS fOllOWing the Pandas API
gdf.head().to_pandas()

out[3]: User_ID | Product_ID | Gender | Age | O i City_C: y | Stay_In_Current_City_Years | Marital_Status | Product_Cat
0| 000001 | Povoseoaz | |1 |10 . 2 o . e Python interface to CUDA C++ library with
1[1000001 | P00248942 | F ?7 10 A 2 0 1 additional funCtionality
2(1000001 | PO0087842 |F ?7 10 A 2 0 12
3| 1000001 | pocossasz [F |9 |10 A 2 0 12 e C(reating GPU DataFrames from Numpy arrays,
4| 1000002 |Poozesasz [|55+ |16 c o 0 8 Pandas DataFrames, and PyArrow Tables

In [6]: | #grabbing the first character of the years in city string to get rid of plus sign, and converting
to int
gdf['city years'] = gdf.Stay_In_Current_City Years.str.get(0).stoi()

— e JIT compilation of User-Defined Functions
In [7]): | #Here we can see how we can control what the value of our dummies with the replace method and turn .
stcinon to lns (UDFs) using Numba

gdf['City Category'] = gdf.City_Category.str.replace('A', 'l')
gdf['City_Category'] = gdf.City_Category.str.replace('B', '2')
gdf['City_Category'] = gdf.City_ Category.str.replace('C', '3'")
gdf['City_Category'] = gdf['City Category'].str.stoi()

RAPIDS 24

GPU Speedup Over CPU

Benchmarks:

800-
400-

uvw
N\e‘ge gott e\

nrows

e 10M
e 100M

single-GPU Speedup vs. Pandas

cuDF v0.13, Pandas 0.25.3
Running on NVIDIA DGX-1:

GPU: NVIDIA Tesla V100 32GB
CPU: Intel(R) Xeon(R) CPU E5-2698 v4
@ 2.20GHz

Benchmark Setup:
RMM Pool Allocator Enabled

DataFrames: 2x int32 columns key columns,
3x int32 value columns

Merge: inner

GroupBy: count, sum, min, max calculated
for each value column

RAPIDS

ETL: the Backbone of Data Science

cuDF is not the end of the story

Data Preparation Model Training Visualization

Dask

CuML
Machine Learning

cuDF culO
Analytics

cuGraph | PyToxIQNCeI:amer
Graph Analytics Deep Learning

cuxfilter <> pyViz
Visualization

GPU Memory >>> ﬁf;c\:e

RAPIDS 26

ETL: the Backbone of Data Science
String Support

Current v0.13 String Support 800.00

*Regular Expressions

*Element-wise operations B00.00
* Split, Find, Extract, Cat, Typecasting, etc...

*String GroupBys, Joins, Sorting, etc.

«Categorical columns fully on GPU

*Native String type in libcudf C++

S
i
8
[en]
o

millisecond
S
[en]
o

200.00
Future v0.14+ String Support -
0.00 — — I
* Further performance optimization lower() find(#) slice(1,15)
* JIT-compiled String UDFs mPandas mcudastrings

RAPIDS 27

Extraction is the Cornerstone
cuDF 1/0 for Faster Data Loading

Follow Pandas APIs and provide >10x speedup

CSV Reader - v0.2, CSV Writer v0.8

Parquet Reader - v0.7, Parquet Writer v0.12
ORC Reader - v0.7, ORC Writer v0.10

JSON Reader - v0.8

Avro Reader - v0.9

GPU Direct Storage integration in progress for
bypassing PCle bottlenecks!

Key is GPU-accelerating both parsing and
decompression wherever possible

import pandas, cudf

%time len(pandas.read_csv('data/nyc/yellow_tripdata_2015-01.csv'))

CPU times: user 25.9 s, sys: 3.26 s, total: 29.2 s
Wall time: 29.2 s

12748986

%stime len(cudf.read_csv('data/nyc/yellow_tripdata_2015-01.csv'))

CPU times: user 1.59 s, sys: 372 ms, total: 1.96 s
Wall time: 2.12 s

12748986

'du -hs data/nyc/yellow_tripdata_2015-01.csv
1.9G data/nyc/yellow_tripdata_2015-01.csv

Source: Apache Crail blog: SQL Performance: Part 1 - Input File Formats

RAPIDS 28

http://crail.incubator.apache.org/blog/2018/08/sql-p1.html

ETL is not just DataFrames!

RAPIDS

Building bridges into the array ecosystem

Data Preparation Model Training Visualization

Dask

CuML
Machine Learning

cuDF culO
Analytics

cuGraph ' PyToxIQNCeI:ainer
Graph Analytics Deep Learning

cuxfilter <> pyViz
Visualization

GPU Memory >>> ﬁf;c\:e

RAPIDS 30

Interoperability for the Win

DLPack and

PYTHRCH mpidpy

ETL: Arrays and DataFrames

Dask and CUDA Python arrays

Numba
| I;I I] | | | | \
}i“‘" Scales NumPy to distributed clusters
| - « Used in climate science, imaging, HPC analysis
>A"“ up to 100TB size

| * Now seamlessly accelerated with GPUs

RAPIDS 32

Benchmark: single-GPU CuPy vs NumPy

Operation
: 0B 00 \“‘)\\G oe‘l
oS o A L NW (3
e et a7 gen® gy g gD gend?
800 Array Size
> 400, m 800MB
210 = 8MB
(3 150 10 150
Q
8 66
S
o 17
§ . 11
7] 53 5.1
E 3.6 3.5
0 -1 1 L =T 1 =1 1 =TT 1 =T 1 =1 T _|_._

More details: https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks

RAPIDS kx}

https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks

SVD Benchmark
Dask and CuPy Doing Complex Workflows

600 - 611.3 —— Dask - Single DGX-1 (CPU only - 80 threads)
— Dask + CuPy - Single DGX-1 (1 Tesla V100)
—— Dask + CuPy - Single DGX-1 (8 Tesla V100)
560 —— Dask + CuPy - Dual DGX-1 (2x8 Tesla V100)
— 400 1
8
) 338.9
E
=
Y 300
>
o
£
=]
O
200 A
107.7
1009 51.2 59.6
33.1
0 - o
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Rows x 1000 Cols le7

RAPIDS 34

Petabyte Scale Analytics with Dask and CuPy

3.2 PETABYTES IN LESS THAN 1 HOUR

Architecture Time Distributed GPU array | parallel reduction | using 76x GPUs

Single CPU Core @ 2hr 39min

Wall Time

Array size (data creation + compute)
3.2PB

Forty CPU Cores 11min (20M x 20M doubles) 54 min 51 s
30s

One GPU 1min 37s Cluster configuration: 20x GCP instances, each
instance has:
CPU: 1 VM socket (Intel Xeon CPU @ 2.30GHz),

: 2-core, 2 threads/core, 132GB mem, GbE ethernet,

Eight GPUs 19s 950 GB disk

GPU: 4x NVIDIA Tesla P100-16GB-PCle (total GPU
https://blog.dask.org/2019/01/03/dask-array-gpus-first-steps DRAM across nodes 1.22 TB)

Software: Ubuntu 18.04, RAPIDS 0.5.1, Dask=1.1.1,
Dask-Distributed=1.1.1, CuPY=5.2.0, CUDA 10.0.130

RAPIDS 35

cuML

Machine Learning
More models more problems

Data Preparation Model Training Visualization

cuDF culO CuML cuGraph PyToxIQNCeI:amer cuxfilter <> pyViz
Analytics Machine Learning Graph Analytics Deep Learning Visualization

GPU Memory >>> ﬁf;c\:e

RAPIDS 37

Problem

Data sizes continue to grow

Massive Dataset

Better to start with as much data as

ossible and explore / preprocess to scale . . .
!c)o performancepneeds.p P Dimension Reduction

Feature Selection

Time
Increase

N

Hours? Days?

Iterate. Cross Validate & Grid Search.
Iterate some more.

Sampling

Meet reasonable speed vs accuracy
tradeoff

RAPIDS 38

ML Technology Stack

Python

Cython

Dask cuML
Dask cuDF
cuDF
Numpy

cuML Algorithms

Thrust
Cub
cuSolver
nvGraph
CUTLASS
cuSparse
cuRand
cuBlas

RAPIDS

39

Algorithms

GPU-accelerated Scikit-Learn

Decision Trees / Random Forests
R Wl S . Linear Regression

. m Classification / Regression Logistic Regression
oees, K-Nearest Neighbors

sufgs’e, Support Vector Machines
06 . .o.':ﬁ.:]
o Ny Tt Inference Random forest / GBDT inference
» :".'P‘..-'..
: s 2ew

PN A KA K-Means
R Clustering DBSCAN
ekl Spectral Clustering

Principal Components

s . : . . Singular Value Decomposition
Decomposition & Dimensionality Reduction UMAP

Spectral Embedding
Cross Validation T-SNE

Holt-Winters

Hyper-parameter Tuning
vore to

Key:
. Preexisting
. NEW or enhanced for

elnnis | 0
RAPIDS 40

RAPIDS matches common Python APIs
CPU-Based Clustering

from sklearn.datasets import make_moons
import pandas

X, y = make_moons(n_samples=int(1e2), . o & '.. .
noise=0.05, random_state=0) : . ’ :
*
X = pandas.DataFrame({'fea%d'%i: X[:, i] : <.
for i in range(X.shape[1])}) .. .
] .S o
§ ° : ¢ Docm : °
from sklearn.cluster import DBSCAN & 3
dbscan = DBSCAN(eps = 0.3, min_samples = 5) 00
%o - ° %
dbscan.fit(X) . o L
y_hat = dbscan.predict(X) % - 2 -
L] . .' .| " L "

RAPIDS 4

RAPIDS matches common Python APIs

GPU-Accelerated Clustering

from sklearn.datasets import make_moons A -
import cudf
X, y = make_moons(n_samples=int(1e2), . o & '.. .
noise=0.05, random_state=0) : : ’ :
*
X = cudf.DataFrame({'fea%d'%i: X[:, i : <.
for i in range(X.shape[1])}) .. .
* .S o
§ ° : ¢ Docm : °
from cuml import DBSCAN & 3
dbscan = DBSCAN(eps = 0.3, min_samples = 5) 00
%o - ° %
dbscan.fit(X) . o L
y_hat = dbscan.predict(X) % - 2 -
L] . .' .| " L "

RAPIDS 42

Benchmarks: single-GPU cuML vs scikit-learn

Operation

Operation
‘355;\0“ X et s c\;\(\ea‘ chN
e9 . Ne C ool o \J =
wed™ qae (e 60 w2e° geste s\ a W9 o° o
Rows
. n 1M Array Size
= 2M e 16K
" m 4M e 32K
46 46 e 64K
e |
& 24 24 2 g
1
g - 15 E
o
% 9.7 9.5 a
° 3
o S
o @
5 2
2 @
=}
o
© &
1x V1 00
2x 20 core CPU

RAPIDS

Forest Inference
Taking models from training to production

CuML’s Forest Inference Library
accelerates prediction (inference) for
random forests and boosted decision
trees:

Works with existing saved models
(XGBoost, LightGBM, scikit-learn RF
CUML RF soon)

Lightweight Python API

Single V100 GPU can infer up to 34x
faster than XGBoost dual-CPU node
Over 100 million forest inferences
per sec (with 1000 trees) on a DGX-1
for large (sparse) or dense models

nce time (ms)

Inf

XGBoost CPU Inference vs. FIL GPU (1K trees, TM rows)

[l CPU Time (XGBoost, 40 cores) @@ FIL GPU Time (1x V100)

4000

3000

2000

1000

bosch airline higgs epsilon

RAPIDS 44

Rapins KK

RAPIDS works closely with the XGBoost GPU Speedup - Single V100 vs Dual 20-core Xeon E5-2698

XGBoost community to accelerate 20,0
GBDTs on GPU

The default rapids conda
metapackage includes XGBoost
XGBoost can seamlessly load data
from cuDF dataframes and cuPy 100 o

arrays 71 - 6.9
Dask allows XGBoost to scale to '
arbitrary numbers of GPUs

With the gpu_hist tree method, a
single GPU can outpace 10s to 100s 0.0
of CPUs

Version 1.0 of XGBoost launched

a ho D ADILL) [)

17.8

5.0 34 3.8

airline bosch fraud higgs year covtype epsilon

RAPIDS 45

Road to 1.0
March 2020 - RAPIDS 0.13

Single-GPU Multi-GPU Multi-Node-Multi-GPU

Gradient Boosted Decision Trees (GBDT)
Linear Regression
Logistic Regression
Random Forest
K-Means
K-NN
DBSCAN
UMAP
Holt-Winters
ARIMA
t-SNE
Principal Components

Singular Value Decomposition

SVM

RAPIDS

Road to 1.0
2020 - RAPIDS 1.0

Single-GPU Multi-Node-Multi-GPU

RAPIDS 47

cuGraph

Graph Analytics

More connections more insights

Model Training
Dask
MxNet

CuML cuGraph
Machine Learning Graph Analytics Deep Learning

Visualization

Data Preparation

PyTorch Chainer cuxfilter <> pyViz

Visualization

cuDF culO
Analytics

I

GPU Memory >>> ﬁf;c\:e

RAPIDS 49

Goals and Benefits of cuGraph

Focus on Features and User Experience

Breakthrough Performance Multiple APls
* Up to 500 million edges on a single 32GB GPU e Python: Familiar NetworkX-like API
* Multi-GPU support for scaling into the billions of * C/C++: lower-level granular control for
edges application developers

Seamless Integration with cuDF and cuML Growing Functionality

* Property Graph support via DataFrames * Extensive collection of algorithm, primitive,
and utility functions

RAPIDS 50

Algorithms N

GPU-accelerated NetworkX Balanced-Cut

Modularity Maximization
Louvain
Ensemble Clustering for Graphs
Subgraph Extraction
KCore and KCore Number
Triangle Counting
K-Truss

Weakly Connected Components
Strongly Connected Components

Page Rank (Multi-GPU)
Personal Page Rank

Jaccard
Weighted Jaccard
Overlap Coefficient

Single Source Shortest Path (SSSP)
Breadth First Search (BFS)

Renumbering
Auto-renumbering

Multi-GPU
Katz
ore 1o Betweenness Centrality

olnnls |
RAPIDS 51

Multi-GPU PageRank Performance

PageRank portion of the HiBench benchmark suite

HiBench Scale Vertices CSV File | # of V100 # of CPU PageRank for
(GB) GPUs Threads | 3 Iterations (secs)
1 1.1

5,000,000 198,000,000 3

BigData 50,000,000 1,980,000,000 34 3 5.1
BigData x2 100,000,000 4,000,000,000 69 6 9.0
BigData x4 200,000,000 8,000,000,000 146 12 18.2
BigData x8 400,000,000 16,000,000,000 300 16 31.8

BigData x8 400,000,000 16,000,000,000 300 800* 5760*

*BigData x8, 100x 8-vCPU nodes, Apache Spark GraphX = 96 mins!

RAPIDS

Community

Ecosystem Partners

CONTRIBUTORS

{D ANACONDA {@/b\ozmgSQL Caéita/lo;qi e .. S
¢ Chainer Pt DeepwaAve
Y DisraL
<ANVIDIA. Lquansigut Walmart

ADOPTERS

Wiguazio

Caﬁi?a% ‘ %?2‘% g.gruphistrg H 20
; databricks Deepwave

- — eferred
lreia— Kinstica MAPR m PRslerg OPyorch [RISIg rey ins

OPEN SOURCE
>>> Apache Jfyplozingsa [f DASK L %clio 2 Numba O learn

dmic

XGBoost

RAPIDS

54

Building on top of RAPIDS

A bigger, better, stronger ecosystem for all

To golozings Streamz

High-Performance GPU accelerated SQL Distributed stream
Serverless event and engine built on top of processing using
data processing that RAPIDS RAPIDS and Dask

utilizes RAPIDS for GPU
Acceleration

RAPIDS 55

Easy Installation

Interactive Installation Guide
RARIDSIREREASENS ERECTICOR

RAPIDS is available as conda packages, docker images, and from source builds. Use the tool below to select your preferred method, packages, and

environment to install RAPIDS. Certain combinations may not be possible and are dimmed automatically. Be sure you’ve met the required

and see the

METHOD

RELEASE

PACKAGES

LINUX

PYTHON

CUDA

COMMAND

T Preferred 3 I A Advanced 1

Docker + Examples & Docker + Dev Env &

Nightly (0.14a)

I cuSignal I cuSpatial I cuxfilter

Ubuntu 18.04 ® CentOS 7 # IRHEL7§

Python 3.7

CUDA 10.1.2

NOTE: Ubuntu 16.04/18.04 & CentOS 7 use the same commands.

conda install -c rapidsai -c¢ nvidia -c conda-forge \
-c defaults rapids=0.13 python=3.6

COPY COMMAND @

DETAILS BELOW
v

RAPIDS

Contribute Back

Issues, feature requests, PRs, Blogs, Tutorials, Videos, QA...bring your best!

cuml
cuML - RAPIDS Machine Learning Library

machine-learning gpu
cuda nvidia
@C++ &5 Apache-20 ¥ 111

cudf
cuDF - GPU DataFrame Library

anaconda gpu arrow

h2o cuda pandas

@cCuda &5 Apache-20 %250 Hr 1,699

notebooks-contrib
RAPIDS Community Notebooks

@ Jupyter Notebook ~ &f8 Apache-20 ¥ 56
ago

cugraph

cuGraph

@cCuda & Apache-20 Y46 k172

machine-learning-algorithms

W 608 (@ 186 (26 issues need help)

machine-learning-algorithms

1131

@ 325 (6 issues need help)

* 70

@ 58 (1 issue needs help)

@® 10 (1 issue needs help)

4

194

s

Updated

Updated 9 minutes ago

Updated 31 minutes ago

Updated 40 minutes

;WalmartLabs ENGINEERING DATA SCIENCE INFOSEC UX DESIGN LEADERSHIP
M How GPU Computing literally saved
me at work?
Python+GPU = Power, 2 Days to 20 seconds
@
I\

ABOUT

425 John Murray .
@MurrayData

Comparison CPU vs GPU @rapidsai to project
100 million x,y points to lat/lon to 0.0Tmm
accuracy. CPU 1 core ¢ 65 mins, multicore ¢
13 mins, GPU #RAPIDSAI 2 seconds. |
optimised the code since previous run. Dell
T7910 Xeon E5-2640V4x2/NVIDIA Titan Xp cc
@NvidiaAl @marc_stampfli

Getting Started with cuDF (RAPIDS)

Darren Ramsook [Follow |

Jun 9 - 3 min read

RAPIDS

Getting Started

RAPIDS Docs

Improved and easier to use!

< C @ docs.rapids.ai/api/cudf/stable/10min.html

Home
cudf

stable (0.13)

Search docs

CONTENTS:
APl Reference
10 Minutes to cubF and Dask-cuDF

What are these Libraries?
When to use cubF and Dask-cuDF
Persisting Data
Wait

Multi-GPU with Dask-cubF

10 Minutes to Dask-XGBoost

10 Minutes to cubF and CuPy

Overview of User Defined Functions
with cuDF

Developer Documentation

Docs » 10 Minutes to cuDF and Dask-cuDF View page source
10 Minutes to cuDF and Dask-cuDF

Modeled after 10 Minutes to Pandas, this is a short introduction to cuDF and Dask-cuDF, geared mainly for new users.

What are these Libraries?

CUDF is a Python GPU DataFrame library (built on the Apache Arrow columnar memory format) for loading, joining,
aggregating, filtering, and otherwise manipulating tabular data using a DataFrame style APL.

Dask is a flexible library for parallel computing in Python that makes scaling out your workflow smooth and simple. On the
CPU, Dask uses Pandas to execute operations in parallel on DataFrame partitions.

Dask-cuDF extends Dask where necessary to allow its DataFrame partitions to be processed by cuDF GPU DataFrames as
opposed to Pandas DataFrames. For instance, when you call dask_cudf.read_csv(...), your cluster's GPUs do the work of
parsing the CSV file(s) with underlying cudf.read_csv().

When to use cuDF and Dask-cuDF
If your workflow is fast enough on a single GPU or your data comfortably fits in memory on a single GPU, you would want to

use cuDF. If you want to distribute your workflow across multiple GPUs, have more data than you can fit in memory on
single GPU, or want to analyze data spread across many files at once, you would want to use Dask-CuDF.

[1:

import os

import numpy as np
import pandas as pd
import cudf

import dask_cudf

np. random. seed(12)
Portions of this were borrowed and adapted from the

CUDF cheatsheet, existing cubF documentation,
and 10 Minutes to Pandas.

https://docs.rapids.ai

RAPIDS

RAPIDS

How do | get the software?

47 <3

% NVIDIA.
GPU CLOUD

» https://github.com/rapidsai » https://ngc.nvidia.com/registry/nvidia-rapidsai
-rapidsai

» https://anaconda.org/rapidsai/
» https://hub.docker.com/r/rapidsai/rapidsai/

RAPIDS 60

https://ngc.nvidia.com/registry/nvidia-rapidsai-rapidsai
https://ngc.nvidia.com/registry/nvidia-rapidsai-rapidsai
https://hub.docker.com/r/rapidsai/rapidsai/
https://github.com/rapidsai
https://anaconda.org/rapidsai/

THANK YOU

Nick Becker
nicholas@nvidia.com

RAPIJOS

